


3. Recursive and Explicit Formulas

A. Recursive : You build the sequence step-by-step. Each term depends on the one before it.

You must be told the starting number.

Example 1: You start with 2 cookies, and you get 3 more cookies each day.

Day 1: 2

Day 2: 2 + 3 = 5

Day 3: 5 + 3 = 8

Recursive formula for the above example:

a₁=2 a_n= a_{n-1} +3 To get today's cookies, add 3 to yesferday's !

Generic recursive formula for arithmetic sequence:

a, - first term an- the term you want an-1: the term before it d = the common difference (what you add each time) $a_n = a_{n-1} + d$

Example 2: You have 1 donut. Every day, your donut count triples (magical donuts)
Day 1:
$$a_1 = 1$$

Day 2: $a_2 = 1 + 3 = 3$
Day 3: $a_3 = 3 + 3 = 9$
Day 4: $a_4 = 0 + 3 = 27$
...
Recursive formula for the above example:
 $a_1 = 1$
 $a_2 = 1$
 $a_2 + 1$
 $a_2 = 1$
 $a_2 + 1$
 $a_2 = 1$
 $a_3 + 1$
 $a_1 = 1$
 $a_2 = 1$
 $a_2 + 1$
 $a_2 = 1$
 $a_3 = 2$
 $a_$

B. Explicit formula : An explicit formula lets you find any term directly by using the position number.
Arithmetic sequence :
$$a_n \ge a_1 + (n-1) \times d$$

Geometric sequence : $a_n \ge a_n + \chi d$
Example 1: You earn 4 points on Day 1. You get 2 more points every day.
This is an arithmetic sequence 4.8.8.10.12...
Explicit formula : $a_n = a_1 + (n-1) \times d$
 γ_{115} the position $a_n = a_1 + (n-1) \times d$
 γ_{115} the position $a_n = a_1 + (n-1) \times d$
 γ_{115} the position $a_n = a_1 + (n-1) \times d$
 γ_{115} the position $a_n = a_1 + (n-1) \times d$
 γ_{115} the position $a_n = a_1 + (n-1) \times d$
 $a_n = 4 + (5-1) \times d$
 $a_n = 4 + (5-1) \times d$
 $a_n = 4 + (5-1) \times d$
 $a_n = 4 + (4) \times 2$
 $a_n = 4 + (4) \times 2$
 $a_n = 2 + \chi = 12$
Example 2: You start with 5 dollars, and every week, your money doubles.
This is a geometric sequence, 5.10, 20.40.80...
Example 2: You start with 5 dollars, and every week, your money doubles.
This is a geometric sequence, 5.10, 20.40.80...
 $z \times pincit$ formula : $a_n = a_1 \times \gamma^{(n-1)}$
 $a_n = 5 \times 2^{n-1}$
 $a_n = 5 \times 2^{n-$

	·							

								1