

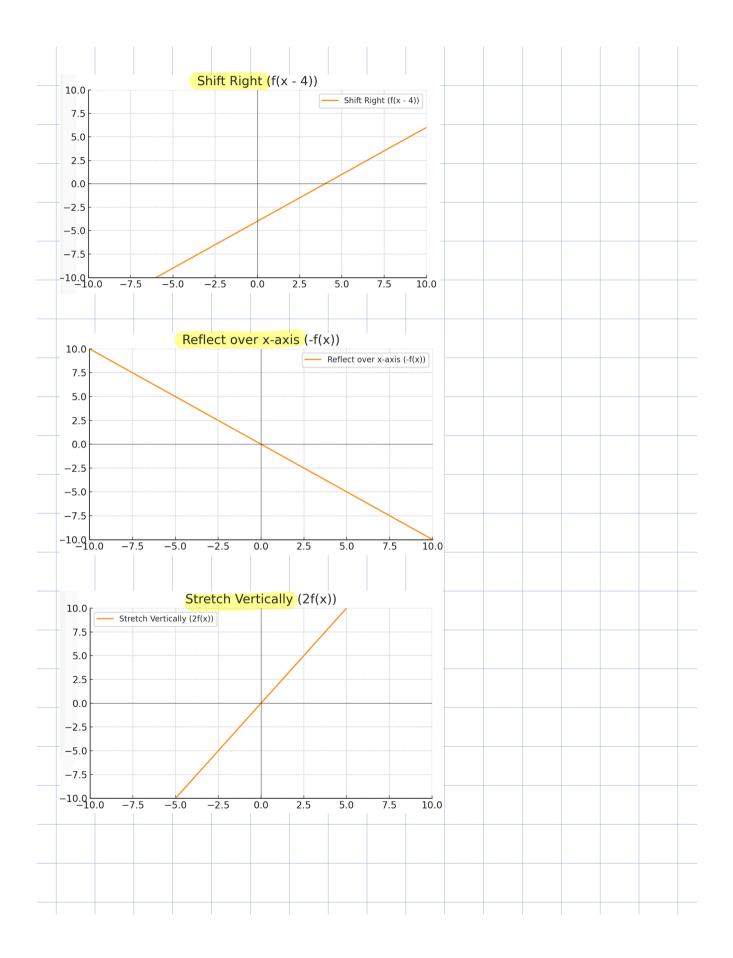
2. Function transformations

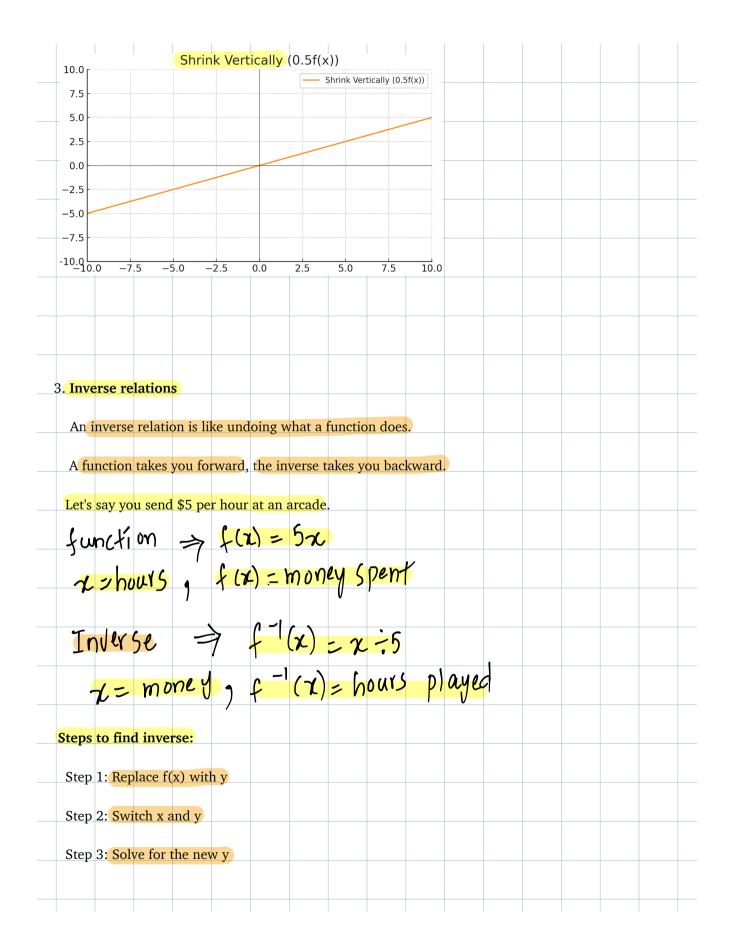
Function transformations change how a graph looks- by moving it, flipping it, or by stretching it.

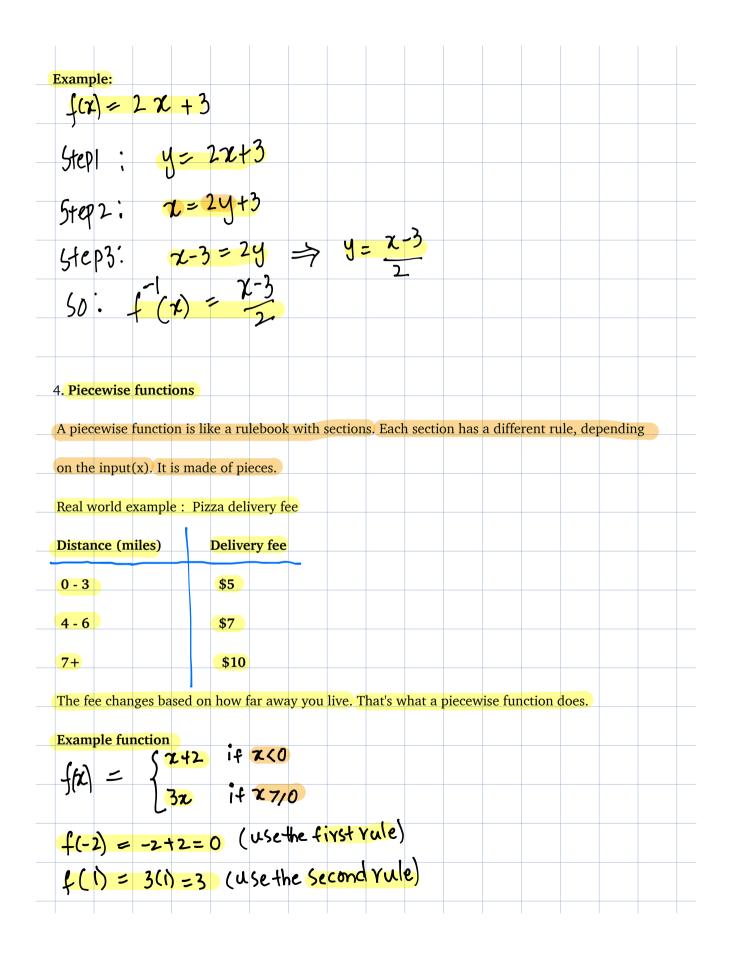
Think of editing a photo: Shift = move it, Reflect = flip it, Stretch = zoom it

Туре	What It Does	Example (based on f(x))			
Shift up	Moves the graph higher	f(x) + 3			
Shift down	Moves the graph lower	f(x) - 2			
Shift left	Moves it to the left	f(x + 1)			
Shift right	Moves it to the right	f(x - 4)			
Reflect over x-axis	Flips the graph upside down	<u>-f(x)</u>			
Stretch vertically	Makes it taller	2f(x)			
Shrink vertically	Makes it flatter	0.5f(x)			
	Original $(f(x) - x)$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					









Imagine a video game with different levels of difficulty, Easy mode for levels 1-3, Medium for 4-6. Hard for 7+. Piecewise functions work the same way- different rule for different zone.

5. Step functions

A step function looks like a staircase on a graph. It jumps from one value to the next without

connecting smoothly.

Think : Same value for a while, then a sudden jump!

Real life example: Bus fare

- Miles Traveled Cost
- 5-9 miles \$3

0-4 miles

- 10+ miles \$4
- If you go 4.1 miles, you pay \$3 no in-between price!

\$2

Example : Round down function

$f(x) = \lfloor x \rfloor$	-> Youn	down	to the	neave st	whole r	number
f(2.q) = 2 f(5.4) = 5						
f(5.4)=5						
f (-1.2)=-2)					
Each time, it <mark>steps d</mark>	own to the closes	s <mark>t whole numb</mark>	<mark>er below it.</mark>			
You're going up stair	s, you stay on or	e step until it's	s time to jum	p to the next	. There's no	sliding.
		_				

6. Domain and Range (In Context and Abstract)
A. Domain and Range in Context (Real Life)
Domain : what you're allowed to put in (inputs).
Range : what you get out (outputs)
Example: You sell 1 to 5 cones per day, and each cone costs \$3.

$$f(x) = 3x$$
; $x = number of (One S Sold
Domain $= \{1, 2, 3, 4, 5\}$
Range $= \{f(t), f(2), f(3), f(4), f(5)\}$
 $= \{3, 6, 9, 12, 15\}$
B. Domain and Range in Abstract Math
Example: $f(x) = 2x$
You can plug in any real number > no limits
Squaring never gives a negative number.
 $Domain = (-\infty, \infty)$
 $pomain = (-\infty, \infty)$
Range $= [0, w)$
The functions works everywhere, but only gives positive results.$

Concept	Meaning
Domain Range	What you can plug in (input x) What comes out (output f(x))
In Context Abstract	Inputs/Outputs that make sense in real life Inputs/Outputs based on math rules