Why Do We Need to Solve Equations?

 Can be applied to real-world problems:

 You're saving up for your favorite video game. You already have some money, and your parents agree

 to give you a little more each week. How many weeks until you can buy the game?

 That's not just a money problem.

Solving One-Step Equations:

One step equations usually includes a variable (like X)—the unknown we're trying to find. These are equations you can solve with one step — either adding, subtracting, multiplying, or dividing.

Example 1: X + 7 = 10

Step: Subtract 7 from both sides, X = 3

Example 2: <mark>Z x 5 = 25</mark>

Step: Divide both sides by 5, Z = 5

Multi-Step Equations:

Multi-step equations require more than one step to solve. You might need to distribute, combine like

terms, and inverse operations (add/subtract, multiply/divide).

Example: 3X + 4 = 16

Step 1: Subtract by 4, 3X = 12

 Step 2: Divide by 3, X = 4

 Example 2: 2(Z-3) = 10

 Step 1: Distribute the 2, 2Z-6 = 10

 Step 2: Add 6, 2Z = 16

 Step 3: Divide by 2, Z = 8

Solving Equations with Variables on Both Sides:

An equation with variables on both sides means both sides have an unknown (like x). To solve, get all the x's on one side and the numbers on the other.

Example 1 (Real-world):

You and your friend are both collecting candies

You<mark>: 5 candies</mark> + 2 each day

Friend: 1 candy + 4 each day

One day, you'll both have the same amount.

An equation with variables on both sides helps you figure out when that happens.

Assume Z is the number of days the candies are being collected.

You collect<mark>: 5 candies</mark> + (2 x Z)

Your friend collects: 1 candy + (4 x Z)

	Both have the	he same n	umber of o	candies a	t the end.					
	5 + (2 x Z)	= 1 + (4	xZ)							
	Step 1: Sub	tract 1 fro	<mark>m both sid</mark>	l <mark>es</mark> , 4 +2	2Z = 4Z					
	Step 2. Sub	tract 27 fr	om both s	ides 4 =	27					
	biep 2. oub			ideb, 1						
	Step 3 <mark>: Divi</mark>	de by 2, Z	z = 2.							
	You'll both l	nave <mark>same</mark>	number o	f candies	after 2 da	l <mark>ys!</mark>				
Exam	ple 2: <mark>3X + 6</mark>	0 = 2X + 1	10							
	Step 1: Sub	tract 2X fr	om both s	ides. X+0	6 = 10					
	Step 2: Sub	tract 6 fro	<mark>m both sid</mark>	les, $X = 4$	4					
	Both sides a	re equal v	when $X = 4$	4.						
Solvi	n <mark>g and Grap</mark> l	hing Ineq	ualities:							
Inequ	alities are like	e equation	ns, but inst	ead of sa	ying two t	hings are e	xactly equ	ual, you're	saying o	ne is
		-								
greate	er, less, or not	equal.								
Real-v	vorld Problen	n: I <mark>need a</mark>	at least \$1	0 to buy	lunch–it's a	any <mark>numbe</mark> r	r greater	than or equ	al to 10	. They
help u	s describe a	range of p	ossible an	swers, no	ot just one.					
					-					

