NATURAL SELECTION

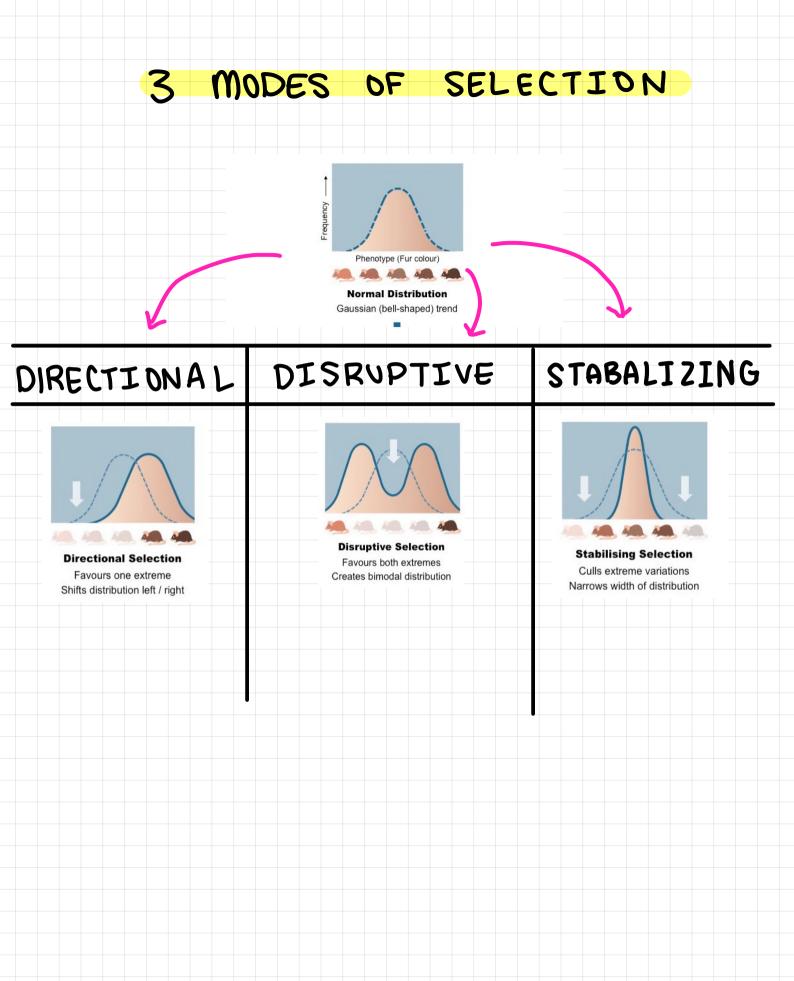
What will we Learn?

- natural selection and the implications of genetic drift including the Founder and Bottleneck Effects
- Effects of genetic drift
- Different modes of Selection

₩ mutations → genetic variation → reproductive advantage → increases frequency of allele in population [adaptive evolution]

Genetic Drift : variation in the frequency of diff ent genotypes

- significant impact on small populations has any change in the genome is magnified
- can cause allele frequencies to change at random
- can lead to loss of genetic variation
- can cause harmful alleles to become fixed


Founder Effect : individuals becomes isolated from original population and establish a new population with a different gene pool

Bottleneck Effect : sudden environmental change -> drastic reduce in population

Gene flow : the transfer of alleles in and out of the population due to the movement of fertile individuals

Relative Fitness : the contribution an in individual makes to the gene pool of the next generation relative to the contributions of other individuals

Bottleneck Effect	Founder Effect
Original population Bottlenecking event Surviving population	Parent population Parent population Parent population Population after a couple of generations Founder population after a couple of generations Founder population after a couple of generations

EARLY EARTH > ORGIN OF LIFE

Conditions on early Earth

- lightning, volcanic activity, UV radiation
- atmosphere = H_2 , N_2 , C0, $C0_2$, H_2O , CH_4 , NH_3 Vapor condensed into oceans

When did life begin?

- 3.5 billion years (fossil evidence)
- -Simpler life before photosynthesis(3.9 bi years ago)

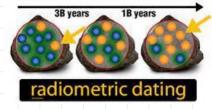
Miller UREY Experiment

Stimulated early earth

- -H2O heated (sea)
- Gases)atmosphere)
- -electrode discharging sparks (lightening)
- condenser with cold water -cooling gases (raining water + dissolved components)
- -identified a variety of organic molecules

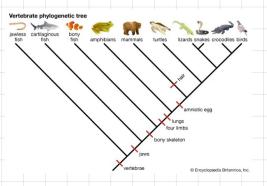
How Did Life Arise?

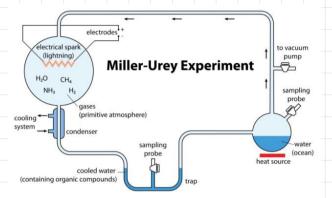
- amino acids apiotic is synthesis ble ganic molecules. nto polymers protocells 1. Abiotic synthesis of small organic molecules. - amino acids
- Joining of these molecules into polymers
- 3. Packaging of polymers into protocells membrane enclosed droplets
- Origin of self -replicating molecules = inheritance -short strands of DNA


Radiometric dating

- -based on the decay of radioactive
- isotopes
 - -fossils contain isotopes
 - -cardon -14
 - -helpful for young fossils (75 odd

years)


-half-life = 5,730


Comparing the amount of adioactive & nonradioactive isotopes to find out rock age

Phylogeny

- evolutionary history of a species inferred from fossils, morphological + molecular homologies among organisms
- Phylogenetic trees as hypotheses

