

b > 1

Exponential Decay:  $f(x) = a(b)^x$ , where 0 < b < 1

- Curves downwards rapidly as x increases
- Ex:  $f(x) = 5(0.5)^{x}$

Functions will never reach 0 but will get infinitely close

## **Applications of Exponential Functions**

Population Growth:  $P(t) = p(e^{(t_1)})$ , where p is the initial population, r is the growth rate, and t is

time.

Radioactive Decay:  $A = a(e^{(-kt)})$ , where a is the initial amount, k is the decay constant, and t is

time.

Compound Interest:  $A = p(1 + r/n)^{(nt)}$ , where p is the principal, r is the interest rate, n is the



## Summary

- Exponents follow specific rules (product, quotient, power, zero, negative, fractional).
- Exponential functions model rapid growth or decay.
- Applications include finance, population studies, and radioactive decay.